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Dimensional crossover and universal roughness distributions in Barkhausen noise
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We investigate the dimensional crossover of scaling properties of avalatdesin-wall jumpg in a
single-interface model, used for the description of Barkhausen noise in disordered magnets. By varying the
transverse aspect rato=L, /L, of simulated samples, the system dimensionality changes from two to three.
We find that perturbing away frod=2 is a relevant field. The exponemtcharacterizing the power-law
scaling of avalanche distributions varies between (IL)0fr d=2 and 1.27615) for d=3, according to a
crossover functiori(x), XE(L;l) ¢/ A, with ¢=0.953). We discuss the possible relevance of our results to the
interpretation of thin-film measurements of Barkhausen noise. We also study the probability distributions of
interface roughness, sampled among successive equilibrium configurations in the Barkhausen noise regime.
Attempts to fit our data to the class of universality distributions associated tonbise givea=1-1.1 for
d=2 and 3(provided that suitable boundary conditions are used in the lattej.case
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[. INTRODUCTION [20-23 to the scaling properties of domain-wall roughness
in BN.
The Barkhausen effe¢fi] has long been known in mag- Experimentally, double-logarithmic plots of frequency of

netism, and reflects the dynamics of domain-wall motion inavalanche occurrenc®(s), against sizes turn out to pro-

the central part of the hysteresis cycle in ferromagnetic maduce unequivocally straight sectiori¥s) ~s™ 7, often span-
terials. The intermittent character which is a central featuraing 3 to 4 orders of magnitude, before dropping to zero for
of Barkhausen “noise”(BN) comes to light already in the larger size$6,24]. Such power-law distribution of events has
original experimental setup. By wrapping a coil around abeen associated to the concepts of self-organized criticality
sample and ramping an external magnetic field at a suitableS,7,25,28, although other researchers argue that this in fact
driving rate, one can detect well-separated voltage pulse€flects proximity to a standard second-order critical point,
across the coil, which are induced by sudden changes dpgether with an unusually broad critical region in parameter
magnetic flux. These in turn result from the microscopic re-SPace8,12]. Whatever the interpretation, a power-law decay

alignment of groups of magnetic moments parallel to theShows up in assorted models used for numer_ical s_imulation
field, i.e., domain-wall motion. For slow driving rates, the ©f BN, both those based on the motion of a single interface

integral of the voltage amplitude of a given pulse over time!" & disordered med|urf\4,7,9_,lq and thosg which adopt. a
is proportional to the change in sample magnetization, thu icture of nucleation of multiple domains in a random-field
giving a measure of the number of spins overturned in tha sing systen[S]. . . .
particular event, or “avalanche size,” to recall the terminol- |. Analogy with the_ \_Nell-establlshed sca_lmg _theory of equi-

’ ) i . librium phase transitions suggests that, in this case of a non-
09y frequently_ used in the s_tudy of Intermittent phenomena quilibrium phenomenon, the search for distinct universality
Modern experlmgntal ?echnlques aIIov_v direct observation o lasses may lead to a better understanding of the basic
domain-wall motion via magneto-optical Kerr effect mea- machanisms involved. In Ref18], experimental measure-
surementd2,3], which demands use of a thin-film sample nents of the exponent of avalanche distributions for sev-
geometry. eral soft ferromagnetic materials were found to separate into

Early proposals for theoretical modeling of BN are re-two distinct groups, namely;=1.50+0.05 (polycrystalline
viewed in Refs[4,5], whose authors formulate a Langevin Fe-Si and partially crystalized amorphous allpyand
description via Fokker-Planck equations. More recently, the-=1.27+0.03 (amorphous alloys under str¢s$ was then
oretical interest in the description of the statistical propertieproposed that BN for each group of materials listed above
of BN has been rekindled, as attempts have been made tselongs to a different universality class of nonequilibrium
establish connections with general theories of nonequilibphase transitions. While the value ofis a fairly plausible
rium phase transitions and noise phenomigal9 . Here, indicator of universality, or lack thereof, between different
we shall be concerned with two such connections. The firstsystems, many questiorjprompted again by analogy with
motivated by the thin-film results just alluded to, is the cross-static critical phenomenastill remain, such as to how many
over between universality classgbese latter to be properly independent exponents there are, and, of particular interest
defined in the contexts one varies the spatial dimensional- here, what is the effect of space dimensionality.
ity of samples; second, we extend recently developed con- Although sample shapes in R¢1.8] were ribbonlike(30
cepts of universality of distribution functions forff/noise ~ cmx0.5 cmx60 um, to quote typical dimensiohshis is far

beyond the thin-film regime, for which thicknesses are of the
order 5-100 nn2,3]. Thus the behavior reported in Ref.
*Electronic address: sldq@if.ufrj.br [18] is expected to be characteristic of fully three-
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dimensional objects. However, when considering ever thinfrom the applied uniform external field and a demagnetiz-

ner samples as in Refg2,3], dimensional crossover effects ing field which is taken to be proportional tdV

cannot be ruled out from the outset. =(1L,L,)S*h;, the magnetizatiotper sitg of the pre-
In this work we use a single-interface model, originallly viously flipped spins for a lattice of transverse ated., .

introduced in Ref[7] for the description of BN. We recall pqr actual magnetic samples, the demagnetizing field is not
(though a detailed discussion will be deferred to Seahet, necessarily uniform along the sample, as implied in the
for a fixed space dimensionality=2 or 3, numerical values 5p0ve expression; even when itésg., for a uniformly mag-

of, e.g., the exponent have been found to differ between petized ellipsoiti % would depend on the system’s aspect
nucleation and single-interface modeds even between dis- yatio. Therefore, our approach amounts to a simplification,
tinct formulations of the lattgr Here we work under the \hich is nevertheless expected to capture the essential as-
assumption that the general features of dimensional CroS$jects of the problem. See REL6] for a detailed discussion.
over to be uncovered are model-independent, similarly to thgjere we useR=5.0, k=1, 7=0.05, values for which fairly

presence of power-law avalanche distributions. The same agoaq distributions of avalanche sizes and roughness are ob-
sumption is expected to hold as regards the roughness distkiined.

butions to be investigated in Sec. IV. We start the simulation with a flat wall. All spins above it
are unflipped. The applied field is set close to the satura-
Il. MODEL AND CALCULATIONAL METHOD tion value of the effective fieldH,, in order to minimize

Here we shall use the single-interface model introduced i
Ref.[7]. We restrict ourselves to the adiabatic limit of a very

slow driving rate, meaning that avalanches are regarded ds- 0 fIPS. causing the interface to move up one step. The

instantaneougoccurring at a fixed value of the external magnetization is updated, and this process continues, with as

field). Many experimental setups can be properly describe any Sweeps of the whole lattice as necessary, i
in this approximatior{3,7,10,16,18 or all sites, when the interface comes to a halt. The external

field is then increased by the minimum amount needed to
bring the most weakly pinned element to motion. The ava-
lanche size corresponds to the number of spins flipped be-
tween two interface stops.

r#ransient effects. The forck is then calculated for each un-
lipped site along the interface, and each spin at a site with

Simulations are performed on dn XL, X geometry,
with the interface motion set along the infinite direction. The
interface at timet is described by its height;=h(x,y,t),
where ,y) is the projection of sité over the cross section.
No overhangs are allowed, duo(x,y,t) is single-valued.

Each element of the interface experiences a force of the Il SCALING OF AVALANCHE DISTRIBUTIONS
form: AND DIMENSIONAL CROSSOVER

We have collected avalanche histograms for vaning
+Heg, (1) andL, in such a way that the number of interface sltgk,
varies between 800 and 80,000. The aspect ratd., /L
was varied between essentially zetb<2, one-dimensional
interface and unity @=3, square interfage For eachL,,
He=H— 7M. 2 Ly, we generated Poavalanches. Although it may take
10°—10° avalanches for a steady-state regime to be reached
The first term on the right-hand side of H@) represents the (as measured by the stabilizationtéf against external field
pinning forceu and brings quenched disorder into the modelH, apart from small fluctuationswe have checked that the
by being chosen randomly, for each lattice sife  only distortion introduced by the transient on avalansize
=(x,y,h;), from a Gaussian distribution of zero mean andstatistics is the one large event occurring at the very start,
standard deviatioR. Large negative values oflead to local i.e., on departure from the initial, flat-interface, configura-
elements where the interface will tend to be pinned, as detion. We cannot guarantee this to be so whauighnesss the
scribed in the simulation procedure below. The second termquantity under investigation, thus data in Sec. IV have been
corresponds to a cooperative interaction among interface etollected only under steady-state conditions.
ements, assumed here to be of elaéiaface tensiontype. The probability distributionP(s) for avalanche size is
In this term, £;(i) is the position of thgth nearest neighbor expected to behave as
of site i. The tendency of this term is to minimize height
differences among interface sites: hightwer) interface
elements experience a negatig@ositivel force from their
neighboring elements. The force constargives the inten-
sity of the elastic coupling, and is taken here as the unit.for wheres, is a cutoff relatedin experiment to domain size
We assume the boundary conditions to be periodic albong and/or demagnetization effedt$0,18, and(in simulation$
and free alongy, so sites ay=0 andy=L, represent the to finite-lattice effect§7,10], or proximity to a critical point
film's free surfaces and have only three neighbors onxthe [8]. The specific shape of the functid(x) has been debated.
plane(except in the monolayer catg=1 which is the two- ~ While a simple exponential has often been used, either phe-
dimensional limit, where all interface sites have two neigh-nomenologically [7,8,10,24 or (in some special cases
borg. The last term is the effective driving force, resulting backed by theoretical argumenf§], Gaussian fits,f(x)

fi=u(xy,h)+k

2 hey=hy

where

P(s)=s™"f

g
)’ 3
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FIG. 1. Double-logarithmi¢base 1D plot of avalanche size dis-
tribution for L,=60, L, =30 (circles. Full line is a fit to the form FIG. 2. Effective exponent from fits of simulation data to Eq.
Eq. (4), for which the optimal parameters are=1.2266),  (4), against inverse cross-sectional interface atga () ~*. Bottom
5=3.6(1), 55=5.97(5)x 10", (full triangles linked by full ling: monolayer,L,=1. Top (Full

squares linked by full line d=3, Ly=L,. Intermediate curves
~exp(—s%/sh) [17], have been proposed as well. Going one(open symbols connected by dashed linéeom bottom to top,
step further, and at the same time trying to keep the numbeaspect ratioA=0.005, 0.01, 0.02, and 0.1.
of fitted parameters to a minimum, here we shall follow

Refs.[27,28 and fit our data to atretchedexponential simulational results exhibited in Fig. 2. Upon increasing

sample size, finite-size effects are reduced and the trends
P(s)=AgS™ T (s/s0)° 4) followed by the respective exponent estimates differ, depend-
0 ' ing on whethel(i) the aspect ratid is kept fixed, no matter

Apart from the overall normalization factdr, one then has oW small its valugall curves except the lower opeor (ii)
three free quantities to fit, which has proved enough for outy=1 is fixed insteadmonolayer, lower curve The latter
purposes. A typical example is displayed in Fig. 1. For thecorresponds to ever decreasid@sL, increases, and in the

roughly sixty{L, L} sets investigated here, the fitted value Lx—> limit is expected to reflect true wo-dimensional be-
of 5 usually falls in the interval 2.4—3.5, with half a dozen havior. Considering, for instance, the curve o 0.005, for

cases slightly above that. This is broadly in line with Lx not very large one has exponent estimates closely resem-
8=2.326) quoted in Ref[27]. Though one might argue that bling those of a monolayer with a S|.m|lar cross—;e_cnonal
a universal value should hold for this exponent, we feel thatarea.” However, the trend shown implies that this is in fact
our results are not accurate enough either to prove or din apparent behavior, ij'lCh arises only as long as finite-size
prove such hypothesis. effects (represented by, ~) are more important than the
On the other hand, the exponentwhich is of central ~System’s three-dimensional charactezpresented by a non-
interest here displays systematic variations both against lagero value ofA). IncreasingL, while keepingA constant,
tice dimensions and aspect ratio. These are displayed in Fighe relative importance of these quantities is eventually re-
2. The overall picture strongly suggests a systematic cros€rsed, and one crosses over to three-dimensional behavior.
over towards three-dimensional behavior for any fixéd  These remarks are translated into quantitative statements, as
nite) aspect ratio. In addition to this, finite-lattice effects arefollows. Since the inverse finite side, - and the interface
present as well. aspect ratidA are both relevant fields, which drive the system
In order to gain a quantitative understanding of this, weaway from true two-dimensional behavior, a plausintsatz
recall general ideas of finite siz29,30 and crossover scal- for the crossover variable is=(LX_1) ¢/A, where ¢ is a
ing [31,32. Crossover phenomena reflect the competitioncrossover exponent, to be determin&d,32. Thus, for any
between different types dipseudgcritical behavior in the fixed A#0, andL,— (x—0), three-dimensional features
vicinity of a multicritical point, at which several characteris- must dominate, while fox>1 two-dimensional behavior
tic lengths divergsi.e., their associated fields approach their (with finite-size correctionswill take over.
respective critical valugsSee, e.g., Sec. VII A of Ref31] Furthermore, the data of Fig. 2 must collapse on the same
for an illustration of the well-known case of thermal- curve, when plotted against This latter statement gives the
geometric crossover in dilute magnets near the percolatiooperational procedure for determination &f By recalling
point. Closer analogy with the present case is found in thehat the horizontal axis variable in Fig. 2 can be written as
discussion of dimensional crossover in “layer” magnets(L,L,) *=x%?A%¢~! and that constan curves are fur-
[31,33 (see, Fig. 42 in Ref.31]). Finite-size scaling can be ther away from the vertical axis the larglis, one sees that,
seen as a particular instance of crossover, in which the sy$a order for those curves to collapse one must have2;
tem’s inverse finite siz& ~! is an additional relevant field, consideration of the numerical values involved shows that, in
driving it away from the true criticality which occurs only in fact, ¢=<1 is needed. The choice af=0.953), with the
the thermodynamic 1imif29,30,32. We now turn to the corresponding results exhibited in Fig. 3, reflects the range of
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1.3

collected data on interface roughness, in order to analyze
them in the context of universal fluctuation distributions. An
important reason for interest in universal distributions is that
they have no adjustable parametg26—23. The fact that a
given property of a system behaves according to one of such
distributions is then expected to indicate the universality
class to which it belongs. For nonequilibrium problems such
as is the case here, the task of connecting expong@nts
features of distributionsto universality classes is far from
accomplishedsee, e.g., the discussion in RgZ3]). Accord-
T ingly, our purpose here is simply to identify what universal
0.5 1 15 distribution (if any) is followed by the scaled interface
roughness for the current model.
(LX¢A)‘1 In order to make contact with previous work on interface
roughness at depinning transitions, we recall some basic
FIG. 3. Effective exponent from fits of simulation data to Eq. ideas.
(4), against crossover variable= (L, 1) #/A, with $=0.95. Key to At the end of each avalanche, we measured the roughness
symbols is same as in caption to Fig. 2. Full line is a fourth-degreeR of the instantaneous interface configuration at tirimethe

fitting curve with an exponential tail near=0. Inset shows details usual way, as the rms fluctuation of the interface height
of main figure close to the vertical axis.

1.2

—_
—_

O||||||||||N,v.".".'

—_

LyLy 1/2
¢ for which the collapse of all data for nonzefo(onto the R(t)= (|_x|_y)*1 2 (hi(t)—F(t))z
left-hand side of the diagranis visually deemed to be best. i=1
The fact that thel=2 data are segregated towards the right
is to be expected in this context, as they belong to a differenvhereh(t) is the average interface height taiAs the ava-
side of the crossovex(>1) where three-dimensional effects lanches progress, one gets a sampling of successive equilib-
vanish. rium configurations; the ensemble of such configurations

The intersection of the scaling curve with the vertical axisyields a distribution of the relative frequency of occurrence
provides an estimate of the three-dimensional scaling expa®f R. In order to get clean distributions, we have seen that
nent. The result is(d=3)=1.271). An ad hocparabolic the number of events considered musthéLOﬁ) i.e., one
fit against 1L,, including only data forA=1 and L, order of magnitude larger than the samples used for the
<160, givesr(d=3)=1.281), where the largest contribu- analysis of size distributions in Sec. Ill. We have used only
tion to the uncertainty comes from spread between extrapcsteady-state data, i.e., after the stabilizatiotgfof Eq. (2)
lations that either do or do not include small-lattice datadgainst external fieldH. This way, our implicit assumption
(L,=30,40). As we have seven lattice sizes available fothat successive interface configurations are stochastically in-
A=1, use of parabo“c fits a|ready g|ves us at most fourdependent galns plau5|b|I|ty Similar ideas were invoked in
degrees of freedom. Given the limited range of data availRef. [34] to justify a mapping of the steady state of a
able, attempting to improve estimates by including higher-deposition-evaporation model onto a random-walk problem.
order corrections would therefore not seem justifiable. Since The roughness exponefiis related to the finite-size scal-
neither extrapolation procedure appears to be obviously sung of the first moment of the distributiof85]
perior to the other, our final quote encompasses both results: [
7(d=3)=1.275(15). (Ru~LS 6)

In Ref. [7], 7(d=3)=1.13(2) is quoted forL,=40,
while our corresponding result is 1.@1. This difference
arises mainly from distinct fitting procedures, in particular,
those authors’ apparent use of a fixég1 for the cutoff.
Indeed, by keeping=1, the best fit of our data is for(d
=3)=1.124), though at the cost of increasing thé per
degree of freedom by one order of magnitude compared wit
the variableé fitting scheme.

A similar parabolic fit of the two-dimensional data gath-
ered on the right-hand corner of Fig. (8sing 4006=L,
<16 000), givesr(d=2)=1.061). This is broadly in ac-
cord with the result of Ref{7], namely, 7(d=2)=1.00(1)
(using 506=L,=<5000).

, (5

where the angular brackets stand for averages over the en-
semble of successive interface configurations of an interface
with transverse dimensioh. We have estimated from
power-law fits to our data. Faf=2 (one-dimensional inter-
face using 406=L,<1200 we get/(2d)=1.24(1), which
fompares well Wlth the usually acceptée-1.25 for the
guenched Edwards-Wilkinson universality clak36—-39.
For d=3 (two-dimensional interfagewe used 3&L,=L,
<80 and two alternative sets of boundary conditions,
namely, mixed(mixed boundary conditions—MB) i.e.,
free alongx and periodic along, as described in Sec. Il, and
periodic along bothx andy (periodic boundary conditions—
PBO. The results are, respectivelyl(d=3,MBC)
=0.87(1) and ¢(d=3,PBC)=0.71(1). While the latter
value is not far frony=0.75 for the corresponding quenched
In this section, we consider only two-dimensional,( Edwards-Wilkinson mode[36,39, the former seems diffi-
=1) and fully three-dimensional{=L,) systems. We have cult to relate to existing results.

IV. ROUGHNESS DISTRIBUTIONS AND 1/f* NOISE
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At this point one might invoke universality ideas and 1
claim that the difference between three-dimensional esti-
mates must be a finite-size effect. Investigating this directly,

|II|\II|!!||III

d=2

e.g., by performing simulations for largdr, would be 01 _
straightforward but time consuming. However, as we shall —~ 3

> o ) N 3
see in what follows, this issue can be addressed more effi- e ]
ciently by returning to our main goal in this section, i.e., by i
looking at the full distributions, rather than examining only .01

selected moment@s is the case of the scaling for extraction

of ). This is because mounting evidence indicates that, in

general, width distributions decouple into the product of a 0.001 .
single size-dependent scale and a univergaize- -2 0 2 4 6
independentscaling function22,23,34,40), that is, y

FIG. 4. Scaled probability distribution®(y) in d=2 fory de-
P(R)=(Uo)®(RIc), d?={(R—(R))?). (7)  fined in Eq.(8). Crosses—,=400; circles—,=1000. Lines are
roughness distributions for fI¥ noise given in Ref[23], with
a=1.15(full) and 1(dashed
Therefore, if the functional formb(z) varies depending,

e.g., on whether mixed or periodic boundary conditions argjuctuation distributions and universality classes for out-of-
used, one is on safer grounds to assume that this reflecgguilibrium transitiong20—23.

differences in the respective universality class. In this con- The quantity to be compared against a universal form is
text, it must be recalled that dependence of scaling quantitiehe distribution of the deviation from the average, scaled by

on boundary conditions is an often-encountered feature wheghe standard deviatiofthis is termedscaling by the variance
dealing with fluctuation phenomena2,23. One illustration  jn Ref.[23)])

of this, which is of great relevance here, is that one of the

requirements for a class of universéiime) fluctuation dis- R—(R)

tributions to hold is that they be periodic in tinh22,23,34. y=—"".
In our case, this feature is replaced by periodic boundary ) ) N

conditionsin space(the same reasoning was used for the ©Our data are depicted, respectively, in Fig. 4 &2,

deposition-evaporation model of RdB4]). Strictly speak- 19 5 ford=3 with MBC, and Fig. 6 ford=3 with PBC. In

ing, this time-space correspondence is only true for the one2ach figure, we have plotted data corresponding to only two

dimensional interfaces of the two-dimensional version of ou/alues ofL (“small” and “large™ ), in order to illustrate that

model. However, the MBC used in Sec. Il suggest that af"€ L dependence of the scaled distribution is negligible,

extension of our investigation to the three-dimensional cas¥/ithout cluttering the diagram with intermediaeresults. In

may not be unjustified. As regards fully PBC, even though i@l figures, the analytic curve correspondingite 1 is shown

is not obvious that the analogy can be pushed that far, w8S & dashed line, in order to ease comparison between differ-

decided to analyze the respective data for completeness. €Nt cases. In general, the scatter of simulational data at the
We analyzed the roughness distributionsder2 and for Iow—roughness end of the dlstr|put|oq is much smaller than

the fully three-dimensional casé.e., aspect ratioL, /L that at the high end, thus we might give more weight to the

=1), the latter both with MBC and PBC. As shown below, former region when judging the quality of fit. Using this
finite transverse dimensions are of negligible import as far aS'it€rion, one sees that thie=2 data appear to be closer to
the scaling function®(z) are concerned, thus giving further
support to the assumption that E@) holds.

We have compared our results against the family of
roughness distributions for periodicft/noise, described in

®
(o

1

‘II\\II'\\\‘I!!

d=3 MBC

T T TTTTIT

L1

Ref.[23]. The roughness of a time signal, and its connections 0.1 & -
via Fourier transform with the frequency spectriand thus = F 3
with the respectivey), are described at length in Sec. Il of = B ]

that reference. The idea of fitting spatial roughness data to

the roughness of time signals.g., random walKksis well

known in the study of interface fluctuatiof35]. The differ-

ent feature here is that we have at our disposal a family of

distributions whose shape varies smoothly against the single 0.001
. . -2 0 2 4

basic parameteat (but, apart from that, are strictly parameter

independent We expect that the value @f which best fits Y

our data should be connected to the underlying universality FiG. 5. Scaled probability distribution®(y) in d=3 with

class of the avalanche model used here. We recall that ours {88C, for y defined in Eq.(8). Crosses—=30; circles— = 80.

a phenomenological study, since at present very little igines are roughness distributions forf 1hoise given in Ref[23],

known regarding théphysica) causal relationships between with a=1.15 (full) and 1(dashedl

0.01

1 \\HHI‘

o]
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1

AL B e V. DISCUSSION AND CONCLUSIONS

d=3 PBC The data displayed in Sec. Ill show that, in the interface

model introduced in Ref7], the power-law behavior of ava-
lanche statistics is characterized by an effective exponent,
which varies continuously both with the interface’s linear
dimensions and aspect ratio. By means of a finite-size and
crossover analysis, we have demonstrated that such continu-
ous variation in fact reflects crossover towards three-
dimensional behavior, for any nonzero aspect ratio.
\ The implications of this for the interpretation of experi-
-=2 0 2 4 6 mental BN results in thin films must be worked out carefully.
y In Ref.[2], the valuer=1.1 is given for Fe films. The au-
FIG. 6. Scaled probability distributior(y) in d=3 with pec  thors of Ref[3] quoter=1.33 for Co films and conclude that
for y defined in Eq(8). Crosses—-£=30; circles— =80. Lines are j[helr setup is a two-dimensional reallzatlon_ of thsngle-
roughness distributions for ¥ noise given in Ref[23], with  Interface model of Ref.[9], for which 7=4/3 in d=2 and
a=0.9 (full), 1 (dashedi and 0.5(short-dashed 3/2 ind=3 [16,41]. On the other hand, as seen above, the
single-interface model considered here givesl.061) in
d=2 and 1.27815) in d=3. Thus one might interpret both
) . sets of experimental results as reflecting a crossover towards
rieverged in thed=3 casfe'wnh MBC. Furthermore, fcql three-dimensional behavior. As regards the specific features
=3 with PBC the best fit is undoubtedly far<1. For this of the experimental investigations, one must dgkwhich, if

latter case, we also display a Gaussian distribution, Whiné ; - ;
- . . ny, of the two models applies to the corresponding micro-
corresponds tax=0.5 [23]. We have tried to quantify the scopic description, andi) how far along, quantitatively, is

above remarks, by iznvestigating the behavior of feper the dimensional crossover for the thin-film geometries used.
de_gree 9f freedom)(( /DO.F) for f|t§ of our data to.the ana- While the visual evidence displayed in R¢8] is con-
Iytllcald dlstrf|butlor?s,r]gga|r5tlc\)/f\3ry|_r1gz. Vr\:e ha\é? |?clu<;e_d vincing proof that a single-interface picture applies in that
(I;_ny jt"% O_Ifhw ICh _(y)/_ s I, "i" td_os?b ISplaye mb case, for a definite answer o one must look at the differ-
gs. 4-6. Though, in principle, the distributions can begpceg hetween the models. As far as the power-law scaling of
evaluated in closed fori23], we ran into serious numerical ;5 1anche distributions is concerned, the model of Faf.
problems fora=0.9 in the regiony=—1. Fortunately, as giters from the one considered here by the introduction of a

shown in Fig. 7, this does not matter much as long as the,, 04| kernel due to dipolar interactions. The vateet/3

d=2 _andd2=3 (MBC) cases are concerned, because the reg  oteq in Ref[3] relies on assuming that the form taken by
spective y“/DOF clearly exhibit minima located slightly

this kernel in momentum space isqg”, (g= wave vecto
abovea=1. On the other hand, this means that b3 P a”. (d 4

ith | foll h h i th with u=1 [41]. In d=3 the same theory gives=3/2 for
with PBC we were not able to follow the trend shown in t © ,—1. andr=5/4 for u—2[18]. Both values have been found
figure into the regior<<0.9, where it is clear that a mini-

S to good approximation in experiments on fully three-
mum of the corresponding®/DOF must be located. On the ginengional systemdthus defining distinct universality
other hand, the Gaussigaa=0.5) distribution shown in Fig.

. . . classey as recalled in the Introductidi8]. For the thin-film
6 evidently overshoots the desired corrections, so one can hgses it is not clear, without a detailed analysis of the specific
sure that the best fit will be in the interval 8:x<0.9. materials involved, whether the nonlocal kernel is of suffi-
cient import to drive avalanche scaling towards tihe 2
AARRRRARRRARRE RS AR AR RE behavior predicted for the model of R¢€].

0.01

\
\
v A
) /R R A S

0.001

the «=1.15 curve than to that fax=1, while the situation is

0.002 Turning to question(ii), recall that the evolution of an
interface along a 400320 um? area of a 25-nm film is
0.0015 shown in Ref[3]. Translating to the language of Sec. Il this
6 would correspond to a transverse aspect ratfo
O 0001 =25 nm/320um=8x 10> (this in an upper bound, as the
~ - - - -
&7 film’s transverse dimensions are likely to be larger than the
0.0005 B area showh Though we do not think that the model results

depicted in Fig. 2 are quantitatively accurate enough, one
must keep in mind the possibility that the effective experi-

AFERETET P mental behavior still is very close to the two-dimensional
09 1 11121314 limit. Indeed, the simulational curve féx=5x 102 already

« shows a value ofr rather close to that for the two-

FIG. 7. x2 per degree of freedomy@&/DOF) for fits of simula-  dimensional case, along an extended portion of the figure.
tion data to analytical forms of 17 distributions againsta. ~ The surest way to settle this matter would be by performing
Triangles—d=2, L,=400; Squaresd=3 MBC, L=40; a series of experiments on films of the same composition and
hexagons-¢=3 PBC,L=40. varying thicknesses, in order to produce a full picture of the
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dimensional crossover. We hope experimentalists will be moroughness distributions for alternative models of B3y9]

tivated by the present results. would be a natural extension of this work, in order to check
As regards the search for universal roughness distribuwhether the above-quoted values @fare indeed universal

tions in Sec. IV, for now we quotéfrom Fig. 7 and the within this subset of avalanche models.

associated remarks=1.05 d=2); a=1.15 d=3, MBC),

and 0.5<a<0.9' '(d=3, PBO. It. thqs appears that_ the_ ACKNOWLEDGMENTS
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