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Dimensional crossover and universal roughness distributions in Barkhausen noise

S. L. A. de Queiroz*
Instituto de Fı´sica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21941-972 Rio de Janeiro, Rio de Janeiro, B

~Received 14 August 2003; published 27 February 2004!

We investigate the dimensional crossover of scaling properties of avalanches~domain-wall jumps! in a
single-interface model, used for the description of Barkhausen noise in disordered magnets. By varying the
transverse aspect ratioA5Ly /Lx of simulated samples, the system dimensionality changes from two to three.
We find that perturbing away fromd52 is a relevant field. The exponentt characterizing the power-law
scaling of avalanche distributions varies between 1.06~1! for d52 and 1.275~15! for d53, according to a
crossover functionf (x), x[(Lx

21)f/A, with f50.95~3!. We discuss the possible relevance of our results to the
interpretation of thin-film measurements of Barkhausen noise. We also study the probability distributions of
interface roughness, sampled among successive equilibrium configurations in the Barkhausen noise regime.
Attempts to fit our data to the class of universality distributions associated to 1/f a noise givea.1–1.1 for
d52 and 3~provided that suitable boundary conditions are used in the latter case!.

DOI: 10.1103/PhysRevE.69.026126 PACS number~s!: 05.65.1b, 05.40.2a, 75.60.Ej, 75.50.Lk
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I. INTRODUCTION

The Barkhausen effect@1# has long been known in mag
netism, and reflects the dynamics of domain-wall motion
the central part of the hysteresis cycle in ferromagnetic m
terials. The intermittent character which is a central feat
of Barkhausen ‘‘noise’’~BN! comes to light already in the
original experimental setup. By wrapping a coil around
sample and ramping an external magnetic field at a suit
driving rate, one can detect well-separated voltage pu
across the coil, which are induced by sudden change
magnetic flux. These in turn result from the microscopic
alignment of groups of magnetic moments parallel to
field, i.e., domain-wall motion. For slow driving rates, th
integral of the voltage amplitude of a given pulse over tim
is proportional to the change in sample magnetization, t
giving a measure of the number of spins overturned in t
particular event, or ‘‘avalanche size,’’ to recall the termino
ogy frequently used in the study of intermittent phenome
Modern experimental techniques allow direct observation
domain-wall motion via magneto-optical Kerr effect me
surements@2,3#, which demands use of a thin-film samp
geometry.

Early proposals for theoretical modeling of BN are r
viewed in Refs.@4,5#, whose authors formulate a Langev
description via Fokker-Planck equations. More recently, t
oretical interest in the description of the statistical proper
of BN has been rekindled, as attempts have been mad
establish connections with general theories of nonequ
rium phase transitions and noise phenomena@6–19# . Here,
we shall be concerned with two such connections. The fi
motivated by the thin-film results just alluded to, is the cro
over between universality classes~these latter to be properl
defined in the context! as one varies the spatial dimension
ity of samples; second, we extend recently developed c
cepts of universality of distribution functions for 1/f a noise
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@20–23# to the scaling properties of domain-wall roughne
in BN.

Experimentally, double-logarithmic plots of frequency
avalanche occurrence,P(s), against sizes turn out to pro-
duce unequivocally straight sections,P(s);s2t, often span-
ning 3 to 4 orders of magnitude, before dropping to zero
larger sizes@6,24#. Such power-law distribution of events ha
been associated to the concepts of self-organized critica
@6,7,25,26#, although other researchers argue that this in f
reflects proximity to a standard second-order critical po
together with an unusually broad critical region in parame
space@8,12#. Whatever the interpretation, a power-law dec
shows up in assorted models used for numerical simula
of BN, both those based on the motion of a single interfa
in a disordered medium@4,7,9,10# and those which adopt a
picture of nucleation of multiple domains in a random-fie
Ising system@8#.

Analogy with the well-established scaling theory of equ
librium phase transitions suggests that, in this case of a n
equilibrium phenomenon, the search for distinct universa
classes may lead to a better understanding of the b
mechanisms involved. In Ref.@18#, experimental measure
ments of the exponentt of avalanche distributions for sev
eral soft ferromagnetic materials were found to separate
two distinct groups, namely,t51.5060.05 ~polycrystalline
Fe-Si and partially crystalized amorphous alloys! and
t51.2760.03 ~amorphous alloys under stress!. It was then
proposed that BN for each group of materials listed abo
belongs to a different universality class of nonequilibriu
phase transitions. While the value oft is a fairly plausible
indicator of universality, or lack thereof, between differe
systems, many questions~prompted again by analogy with
static critical phenomena! still remain, such as to how man
independent exponents there are, and, of particular inte
here, what is the effect of space dimensionality.

Although sample shapes in Ref.@18# were ribbonlike~30
cm30.5 cm360 mm, to quote typical dimensions!, this is far
beyond the thin-film regime, for which thicknesses are of
order 5–100 nm@2,3#. Thus the behavior reported in Re
@18# is expected to be characteristic of fully thre
©2004 The American Physical Society26-1
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dimensional objects. However, when considering ever th
ner samples as in Refs.@2,3#, dimensional crossover effect
cannot be ruled out from the outset.

In this work we use a single-interface model, origina
introduced in Ref.@7# for the description of BN. We recal
~though a detailed discussion will be deferred to Sec. V! that,
for a fixed space dimensionalityd52 or 3, numerical values
of, e.g., the exponentt have been found to differ betwee
nucleation and single-interface models~or even between dis
tinct formulations of the latter!. Here we work under the
assumption that the general features of dimensional cr
over to be uncovered are model-independent, similarly to
presence of power-law avalanche distributions. The same
sumption is expected to hold as regards the roughness d
butions to be investigated in Sec. IV.

II. MODEL AND CALCULATIONAL METHOD

Here we shall use the single-interface model introduce
Ref. @7#. We restrict ourselves to the adiabatic limit of a ve
slow driving rate, meaning that avalanches are regarde
instantaneous~occurring at a fixed value of the extern
field!. Many experimental setups can be properly descri
in this approximation@3,7,10,16,18#.

Simulations are performed on anLx3Ly3` geometry,
with the interface motion set along the infinite direction. T
interface at timet is described by its heighthi[h(x,y,t),
where (x,y) is the projection of sitei over the cross section
No overhangs are allowed, soh(x,y,t) is single-valued.
Each elementi of the interface experiences a force of t
form:

f i5u~x,y,hi !1kF(
j

h, j ( i )
2hi G1He , ~1!

where

He5H2hM . ~2!

The first term on the right-hand side of Eq.~1! represents the
pinning forceu and brings quenched disorder into the mod
by being chosen randomly, for each lattice siterW i
[(x,y,hi), from a Gaussian distribution of zero mean a
standard deviationR. Large negative values ofu lead to local
elements where the interface will tend to be pinned, as
scribed in the simulation procedure below. The second t
corresponds to a cooperative interaction among interface
ements, assumed here to be of elastic~surface tension! type.
In this term,, j ( i ) is the position of thej th nearest neighbo
of site i. The tendency of this term is to minimize heig
differences among interface sites: higher~lower! interface
elements experience a negative~positive! force from their
neighboring elements. The force constantk gives the inten-
sity of the elastic coupling, and is taken here as the unit fof.
We assume the boundary conditions to be periodic alonx
and free alongy, so sites aty50 andy5Ly represent the
film’s free surfaces and have only three neighbors on thexy
plane~except in the monolayer caseLy51 which is the two-
dimensional limit, where all interface sites have two neig
bors!. The last term is the effective driving force, resultin
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from the applied uniform external fieldH and a demagnetiz
ing field which is taken to be proportional toM
5(1/LxLy)( i 51

LxLyhi , the magnetization~per site! of the pre-
viously flipped spins for a lattice of transverse areaLxLy .
For actual magnetic samples, the demagnetizing field is
necessarily uniform along the sample, as implied in
above expression; even when it is~e.g., for a uniformly mag-
netized ellipsoid!, h would depend on the system’s aspe
ratio. Therefore, our approach amounts to a simplificati
which is nevertheless expected to capture the essentia
pects of the problem. See Ref.@16# for a detailed discussion
Here we useR55.0, k51, h50.05, values for which fairly
broad distributions of avalanche sizes and roughness are
tained.

We start the simulation with a flat wall. All spins above
are unflipped. The applied fieldH is set close to the satura
tion value of the effective fieldHe , in order to minimize
transient effects. The forcef i is then calculated for each un
flipped site along the interface, and each spin at a site w
f i>0 flips, causing the interface to move up one step. T
magnetization is updated, and this process continues, wit
many sweeps of the whole lattice as necessary, untilf i,0
for all sites, when the interface comes to a halt. The exte
field is then increased by the minimum amount needed
bring the most weakly pinned element to motion. The a
lanche size corresponds to the number of spins flipped
tween two interface stops.

III. SCALING OF AVALANCHE DISTRIBUTIONS
AND DIMENSIONAL CROSSOVER

We have collected avalanche histograms for varyingLx
andLy , in such a way that the number of interface sitesLxLy
varies between 800 and 80,000. The aspect ratioA[Ly /Lx
was varied between essentially zero (d52, one-dimensional
interface! and unity (d53, square interface!. For eachLx ,
Ly we generated 105 avalanches. Although it may tak
102– 103 avalanches for a steady-state regime to be reac
~as measured by the stabilization ofHe against external field
H, apart from small fluctuations!, we have checked that th
only distortion introduced by the transient on avalanchesize
statistics is the one large event occurring at the very st
i.e., on departure from the initial, flat-interface, configur
tion. We cannot guarantee this to be so whenroughnessis the
quantity under investigation, thus data in Sec. IV have b
collected only under steady-state conditions.

The probability distributionP(s) for avalanche sizes is
expected to behave as

P~s!5s2t f S s

s0
D , ~3!

wheres0 is a cutoff related~in experiment! to domain size
and/or demagnetization effects@10,18#, and ~in simulations!
to finite-lattice effects@7,10#, or proximity to a critical point
@8#. The specific shape of the functionf (x) has been debated
While a simple exponential has often been used, either p
nomenologically @7,8,10,24# or ~in some special cases!
backed by theoretical arguments@5#, Gaussian fits,f (x)
6-2
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DIMENSIONAL CROSSOVER AND UNIVERSAL . . . PHYSICAL REVIEW E 69, 026126 ~2004!
;exp(2s2/s0
2) @17#, have been proposed as well. Going o

step further, and at the same time trying to keep the num
of fitted parameters to a minimum, here we shall follo
Refs.@27,28# and fit our data to astretchedexponential

P~s!5A0s2te2(s/s0)d
. ~4!

Apart from the overall normalization factorA0, one then has
three free quantities to fit, which has proved enough for
purposes. A typical example is displayed in Fig. 1. For
roughly sixty$Lx ,Ly% sets investigated here, the fitted val
of d usually falls in the interval 2.4–3.5, with half a doze
cases slightly above that. This is broadly in line wi
d52.32~6! quoted in Ref.@27#. Though one might argue tha
a universal value should hold for this exponent, we feel t
our results are not accurate enough either to prove or
prove such hypothesis.

On the other hand, the exponentt which is of central
interest here displays systematic variations both against
tice dimensions and aspect ratio. These are displayed in
2. The overall picture strongly suggests a systematic cr
over towards three-dimensional behavior for any fixed~fi-
nite! aspect ratio. In addition to this, finite-lattice effects a
present as well.

In order to gain a quantitative understanding of this,
recall general ideas of finite size@29,30# and crossover scal
ing @31,32#. Crossover phenomena reflect the competit
between different types of~pseudo!critical behavior in the
vicinity of a multicritical point, at which several characteri
tic lengths diverge~i.e., their associated fields approach th
respective critical values!. See, e.g., Sec. VII A of Ref.@31#
for an illustration of the well-known case of therma
geometric crossover in dilute magnets near the percola
point. Closer analogy with the present case is found in
discussion of dimensional crossover in ‘‘layer’’ magne
@31,33# ~see, Fig. 42 in Ref.@31#!. Finite-size scaling can be
seen as a particular instance of crossover, in which the
tem’s inverse finite sizeL21 is an additional relevant field
driving it away from the true criticality which occurs only i
the thermodynamic limit@29,30,32#. We now turn to the

FIG. 1. Double-logarithmic~base 10! plot of avalanche size dis
tribution for Lx560, Ly530 ~circles!. Full line is a fit to the form
Eq. ~4!, for which the optimal parameters are:t51.226~6!,
d53.6~1!, s055.97(5)3104.
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simulational results exhibited in Fig. 2. Upon increasi
sample size, finite-size effects are reduced and the tre
followed by the respective exponent estimates differ, depe
ing on whether~i! the aspect ratioA is kept fixed, no matter
how small its value~all curves except the lower one!, or ~ii !
Ly51 is fixed instead~monolayer, lower curve!. The latter
corresponds to ever decreasingA asLx increases, and in the
Lx→` limit is expected to reflect true two-dimensional b
havior. Considering, for instance, the curve forA50.005, for
Lx not very large one has exponent estimates closely res
bling those of a monolayer with a similar cross-section
‘‘area.’’ However, the trend shown implies that this is in fa
an apparent behavior, which arises only as long as finite-
effects ~represented byLx

21) are more important than th
system’s three-dimensional character~represented by a non
zero value ofA). IncreasingLx while keepingA constant,
the relative importance of these quantities is eventually
versed, and one crosses over to three-dimensional beha
These remarks are translated into quantitative statement
follows. Since the inverse finite sizeLx

21 and the interface
aspect ratioA are both relevant fields, which drive the syste
away from true two-dimensional behavior, a plausibleansatz
for the crossover variable isx5(Lx

21)f/A, where f is a
crossover exponent, to be determined@31,32#. Thus, for any
fixed AÞ0, andLx→` (x→0), three-dimensional feature
must dominate, while forx@1 two-dimensional behavio
~with finite-size corrections! will take over.

Furthermore, the data of Fig. 2 must collapse on the sa
curve, when plotted againstx. This latter statement gives th
operational procedure for determination off. By recalling
that the horizontal axis variable in Fig. 2 can be written
(LxLy)

215x2/f A2/f21, and that constant-A curves are fur-
ther away from the vertical axis the largerA is, one sees that
in order for those curves to collapse one must havef,2;
consideration of the numerical values involved shows that
fact, f&1 is needed. The choice off50.95~3!, with the
corresponding results exhibited in Fig. 3, reflects the rang

FIG. 2. Effective exponentt from fits of simulation data to Eq.
~4!, against inverse cross-sectional interface area (LxLy)

21. Bottom
~full triangles linked by full line!: monolayer,Ly51. Top ~Full
squares linked by full line!: d53, Lx5Ly . Intermediate curves
~open symbols connected by dashed lines!: from bottom to top,
aspect ratioA50.005, 0.01, 0.02, and 0.1.
6-3
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S. L. A. de QUEIROZ PHYSICAL REVIEW E69, 026126 ~2004!
f for which the collapse of all data for nonzeroA ~onto the
left-hand side of the diagram! is visually deemed to be bes
The fact that thed52 data are segregated towards the rig
is to be expected in this context, as they belong to a differ
side of the crossover (x.1) where three-dimensional effec
vanish.

The intersection of the scaling curve with the vertical a
provides an estimate of the three-dimensional scaling ex
nent. The result ist(d53)51.27(1). An ad hocparabolic
fit against 1/Lx , including only data forA51 and Lx
<160, givest(d53)51.28(1), where the largest contribu
tion to the uncertainty comes from spread between extra
lations that either do or do not include small-lattice da
(Lx530,40). As we have seven lattice sizes available
A51, use of parabolic fits already gives us at most fo
degrees of freedom. Given the limited range of data av
able, attempting to improve estimates by including high
order corrections would therefore not seem justifiable. Si
neither extrapolation procedure appears to be obviously
perior to the other, our final quote encompasses both res
t(d53)51.275(15).

In Ref. @7#, t(d53)51.13(2) is quoted forLx540,
while our corresponding result is 1.21~1!. This difference
arises mainly from distinct fitting procedures, in particul
those authors’ apparent use of a fixedd51 for the cutoff.
Indeed, by keepingd51, the best fit of our data is fort(d
53)51.12(4), though at the cost of increasing thex2 per
degree of freedom by one order of magnitude compared w
the variable-d fitting scheme.

A similar parabolic fit of the two-dimensional data gat
ered on the right-hand corner of Fig. 3~using 4000<Lx
<16 000), givest(d52)51.06(1). This is broadly in ac-
cord with the result of Ref.@7#, namely,t(d52)51.00(1)
~using 500<Lx<5000).

IV. ROUGHNESS DISTRIBUTIONS AND 1 Õf a NOISE

In this section, we consider only two-dimensional (Lx
51) and fully three-dimensional (Lx5Ly) systems. We have

FIG. 3. Effective exponentt from fits of simulation data to Eq
~4!, against crossover variablex[(Lx

21)f/A, with f50.95. Key to
symbols is same as in caption to Fig. 2. Full line is a fourth-deg
fitting curve with an exponential tail nearx50. Inset shows details
of main figure close to the vertical axis.
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collected data on interface roughness, in order to ana
them in the context of universal fluctuation distributions. A
important reason for interest in universal distributions is t
they have no adjustable parameters@20–23#. The fact that a
given property of a system behaves according to one of s
distributions is then expected to indicate the universa
class to which it belongs. For nonequilibrium problems su
as is the case here, the task of connecting exponents~or
features of distributions! to universality classes is far from
accomplished~see, e.g., the discussion in Ref.@23#!. Accord-
ingly, our purpose here is simply to identify what univers
distribution ~if any! is followed by the scaled interfac
roughness for the current model.

In order to make contact with previous work on interfa
roughness at depinning transitions, we recall some b
ideas.

At the end of each avalanche, we measured the rough
R of the instantaneous interface configuration at timet in the
usual way, as the rms fluctuation of the interface height

R~ t !5F ~LxLy!21 (
i 51

LxLy

„hi~ t !2h̄~ t !…2G1/2

, ~5!

where h̄(t) is the average interface height att. As the ava-
lanches progress, one gets a sampling of successive eq
rium configurations; the ensemble of such configuratio
yields a distribution of the relative frequency of occurren
of R. In order to get clean distributions, we have seen t
the number of events considered must beO(106), i.e., one
order of magnitude larger than the samples used for
analysis of size distributions in Sec. III. We have used o
steady-state data, i.e., after the stabilization ofHe of Eq. ~2!
against external fieldH. This way, our implicit assumption
that successive interface configurations are stochastically
dependent gains plausibility. Similar ideas were invoked
Ref. @34# to justify a mapping of the steady state of
deposition-evaporation model onto a random-walk proble

The roughness exponentz is related to the finite-size sca
ing of the first moment of the distribution@35#

^R L&;Lz, ~6!

where the angular brackets stand for averages over the
semble of successive interface configurations of an interf
with transverse dimensionL. We have estimatedz from
power-law fits to our data. Ford52 ~one-dimensional inter-
face! using 400<Lx<1200 we getz(2d)51.24(1), which
compares well with the usually acceptedz.1.25 for the
quenched Edwards-Wilkinson universality class@36–39#.
For d53 ~two-dimensional interface! we used 30<Lx5Ly
<80 and two alternative sets of boundary condition
namely, mixed ~mixed boundary conditions—MBC!, i.e.,
free alongx and periodic alongy, as described in Sec. II, an
periodic along bothx andy ~periodic boundary conditions—
PBC!. The results are, respectively,z(d53,MBC)
50.87(1) and z(d53,PBC)50.71(1). While the latter
value is not far fromz.0.75 for the corresponding quenche
Edwards-Wilkinson model@36,39#, the former seems diffi-
cult to relate to existing results.

e
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At this point one might invoke universality ideas an
claim that the difference between three-dimensional e
mates must be a finite-size effect. Investigating this direc
e.g., by performing simulations for largerL, would be
straightforward but time consuming. However, as we sh
see in what follows, this issue can be addressed more
ciently by returning to our main goal in this section, i.e.,
looking at the full distributions, rather than examining on
selected moments~as is the case of the scaling for extracti
of z!. This is because mounting evidence indicates that
general, width distributions decouple into the product o
single size-dependent scale and a universal~size-
independent! scaling function@22,23,34,40#, that is,

P~R!5~1/s!F~R/s!, s25Š~R2^R&!2
‹. ~7!

Therefore, if the functional formF(z) varies depending
e.g., on whether mixed or periodic boundary conditions
used, one is on safer grounds to assume that this refl
differences in the respective universality class. In this c
text, it must be recalled that dependence of scaling quant
on boundary conditions is an often-encountered feature w
dealing with fluctuation phenomena@22,23#. One illustration
of this, which is of great relevance here, is that one of
requirements for a class of universal~time! fluctuation dis-
tributions to hold is that they be periodic in time@22,23,34#.

In our case, this feature is replaced by periodic bound
conditions in space~the same reasoning was used for t
deposition-evaporation model of Ref.@34#!. Strictly speak-
ing, this time-space correspondence is only true for the o
dimensional interfaces of the two-dimensional version of
model. However, the MBC used in Sec. III suggest that
extension of our investigation to the three-dimensional c
may not be unjustified. As regards fully PBC, even thoug
is not obvious that the analogy can be pushed that far,
decided to analyze the respective data for completeness

We analyzed the roughness distributions ford52 and for
the fully three-dimensional case~i.e., aspect ratioLy /Lx
51), the latter both with MBC and PBC. As shown belo
finite transverse dimensions are of negligible import as fa
the scaling functionsF(z) are concerned, thus giving furthe
support to the assumption that Eq.~7! holds.

We have compared our results against the family
roughness distributions for periodic 1/f a noise, described in
Ref. @23#. The roughness of a time signal, and its connecti
via Fourier transform with the frequency spectrum~and thus
with the respectivea!, are described at length in Sec. II o
that reference. The idea of fitting spatial roughness dat
the roughness of time signals~e.g., random walks! is well
known in the study of interface fluctuations@35#. The differ-
ent feature here is that we have at our disposal a family
distributions whose shape varies smoothly against the si
basic parametera ~but, apart from that, are strictly paramet
independent!. We expect that the value ofa which best fits
our data should be connected to the underlying universa
class of the avalanche model used here. We recall that ou
a phenomenological study, since at present very little
known regarding the~physical! causal relationships betwee
02612
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fluctuation distributions and universality classes for out-
equilibrium transitions@20–23#.

The quantity to be compared against a universal form
the distribution of the deviation from the average, scaled
the standard deviation~this is termedscaling by the variance
in Ref. @23#!

y[
R2^R&

s
. ~8!

Our data are depicted, respectively, in Fig. 4 ford52,
Fig. 5 ford53 with MBC, and Fig. 6 ford53 with PBC. In
each figure, we have plotted data corresponding to only
values ofL ~‘‘small’’ and ‘‘large’’ !, in order to illustrate that
the L dependence of the scaled distribution is negligib
without cluttering the diagram with intermediate-L results. In
all figures, the analytic curve corresponding toa51 is shown
as a dashed line, in order to ease comparison between d
ent cases. In general, the scatter of simulational data at
low-roughness end of the distribution is much smaller th
that at the high end, thus we might give more weight to
former region when judging the quality of fit. Using th
criterion, one sees that thed52 data appear to be closer t

FIG. 4. Scaled probability distributionsF(y) in d52 for y de-
fined in Eq.~8!. Crosses—Lx5400; circles—Lx51000. Lines are
roughness distributions for 1/f a noise given in Ref.@23#, with
a51.15 ~full ! and 1~dashed!.

FIG. 5. Scaled probability distributionsF(y) in d53 with
MBC, for y defined in Eq.~8!. Crosses—L530; circles—L580.
Lines are roughness distributions for 1/f a noise given in Ref.@23#,
with a51.15 ~full ! and 1~dashed!.
6-5
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S. L. A. de QUEIROZ PHYSICAL REVIEW E69, 026126 ~2004!
thea51.15 curve than to that fora51, while the situation is
reversed in thed53 case with MBC. Furthermore, ford
53 with PBC the best fit is undoubtedly fora,1. For this
latter case, we also display a Gaussian distribution, wh
corresponds toa50.5 @23#. We have tried to quantify the
above remarks, by investigating the behavior of thex2 per
degree of freedom (x2/DOF! for fits of our data to the ana
lytical distributions, against varyinga. We have included
only data for whichF(y)>1023, i.e., those displayed in
Figs. 4–6. Though, in principle, the distributions can
evaluated in closed form@23#, we ran into serious numerica
problems fora&0.9 in the regiony&21. Fortunately, as
shown in Fig. 7, this does not matter much as long as
d52 andd53 ~MBC! cases are concerned, because the
spective x2/DOF clearly exhibit minima located slightly
abovea51. On the other hand, this means that ford53
with PBC we were not able to follow the trend shown in t
figure into the regiona,0.9, where it is clear that a mini
mum of the correspondingx2/DOF must be located. On th
other hand, the Gaussian~a50.5! distribution shown in Fig.
6 evidently overshoots the desired corrections, so one ca
sure that the best fit will be in the interval 0.5,a,0.9.

FIG. 6. Scaled probability distributionsF(y) in d53 with PBC
for y defined in Eq.~8!. Crosses—L530; circles—L580. Lines are
roughness distributions for 1/f a noise given in Ref.@23#, with
a50.9 ~full !, 1 ~dashed!, and 0.5~short-dashed!.

FIG. 7. x2 per degree of freedom (x2/DOF! for fits of simula-
tion data to analytical forms of 1/f a distributions againsta.
Triangles—d52, Lx5400; Squares—d53 MBC, L540;
hexagons—d53 PBC,L540.
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V. DISCUSSION AND CONCLUSIONS

The data displayed in Sec. III show that, in the interfa
model introduced in Ref.@7#, the power-law behavior of ava
lanche statistics is characterized by an effective expon
which varies continuously both with the interface’s line
dimensions and aspect ratio. By means of a finite-size
crossover analysis, we have demonstrated that such con
ous variation in fact reflects crossover towards thr
dimensional behavior, for any nonzero aspect ratio.

The implications of this for the interpretation of exper
mental BN results in thin films must be worked out careful
In Ref. @2#, the valuet51.1 is given for Fe films. The au
thors of Ref.@3# quotet.1.33 for Co films and conclude tha
their setup is a two-dimensional realization of the~single-
interface! model of Ref.@9#, for which t54/3 in d52 and
3/2 in d53 @16,41#. On the other hand, as seen above,
single-interface model considered here givest51.06~1! in
d52 and 1.275~15! in d53. Thus one might interpret both
sets of experimental results as reflecting a crossover tow
three-dimensional behavior. As regards the specific featu
of the experimental investigations, one must ask:~i! which, if
any, of the two models applies to the corresponding mic
scopic description, and~ii ! how far along, quantitatively, is
the dimensional crossover for the thin-film geometries us

While the visual evidence displayed in Ref.@3# is con-
vincing proof that a single-interface picture applies in th
case, for a definite answer to~i! one must look at the differ-
ences between the models. As far as the power-law scalin
avalanche distributions is concerned, the model of Ref.@9#
differs from the one considered here by the introduction o
nonlocal kernel due to dipolar interactions. The valuet54/3
quoted in Ref.@3# relies on assuming that the form taken b
this kernel in momentum space is;qm, (q5 wave vector!
with m51 @41#. In d53 the same theory givest53/2 for
m51, andt55/4 for m52 @18#. Both values have been foun
to good approximation in experiments on fully thre
dimensional systems~thus defining distinct universality
classes!, as recalled in the Introduction@18#. For the thin-film
cases it is not clear, without a detailed analysis of the spec
materials involved, whether the nonlocal kernel is of su
cient import to drive avalanche scaling towards thed52
behavior predicted for the model of Ref.@9#.

Turning to question~ii !, recall that the evolution of an
interface along a 4003320 mm2 area of a 25-nm film is
shown in Ref.@3#. Translating to the language of Sec. III, th
would correspond to a transverse aspect ratioA
525 nm/320mm.831025 ~this in an upper bound, as th
film’s transverse dimensions are likely to be larger than
area shown!. Though we do not think that the model resu
depicted in Fig. 2 are quantitatively accurate enough,
must keep in mind the possibility that the effective expe
mental behavior still is very close to the two-dimension
limit. Indeed, the simulational curve forA5531023 already
shows a value oft rather close to that for the two
dimensional case, along an extended portion of the fig
The surest way to settle this matter would be by perform
a series of experiments on films of the same composition
varying thicknesses, in order to produce a full picture of t
6-6
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dimensional crossover. We hope experimentalists will be m
tivated by the present results.

As regards the search for universal roughness distr
tions in Sec. IV, for now we quote~from Fig. 7 and the
associated remarks! a.1.05 (d52); a.1.15 (d53, MBC!,
and 0.5,a,0.9 (d53, PBC!. It thus appears that th
boundary conditions do have significant influence in t
context, a fact which remains to be more fully understo
Although the search for the physical origins of 1/f noise@42#
is clearly of great interest, it appears that, at least for n
equilibrium phenomena as is the case here, we are still
very preliminary stage. Again, it is hoped that the pres
results will motivate further research. Measurements of
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roughness distributions for alternative models of BN@8,9#
would be a natural extension of this work, in order to che
whether the above-quoted values ofa are indeed universa
within this subset of avalanche models.
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